SpiderGraph

Software Requirements Specification Revised

Marc Cohen
Patrick DeMoss
Yevgen Voronenko
Frederick Walsh
Leland Weeks

2nd June 2003

SeiderGrapl

Available online at http://www.mcs.drexel.edu/ uyvorone/cs452/

Section 0 Page 2
Contents

1 Introduction 7

1.1 Abstract oL 7

1.2 Purpose of this document 7

1.3 Goals. o 8

1.4 Scope of the producto 8

1.5 Definitions, acronyms and abbreviations 9

1.6 Overview of the remainder of the document 10

2 General Description 11

2.1 Product perspectiveo 11

2.2 Product functions oo L 11

2.3 User characteristics Lo o 13

2.4 General constraintso Lo 13

2.5 Assumptions and dependencies 14

3 Graph Rendering and Formatting Requirements 15

3.1 Description e 15

3.1.1 Graph descriptiono 15

3.1.2 Graphrendering oL 15

3.2 Nodes 15

3.2.1 Style 15

3.2.2 Uniqueness i e e e e 16

3.3 Edges 16

3.3.1 Directionality oo 16

3.3.2 Derived Styleo 16

3.3.3 Deriving style for weighted edges 17

SpiderGraph Requirements

Revision : 1.8

2nd June 2003

Section 0 Page 3

3.4 Root e 17
3.4.1 Definition Lo 17

3.4.2 Imitialization.o oL 17

3.5 Growth 18
3.5.1 Growth direction and scrolling 18

352 Newmnodes. 18

3.5.3 Stability 18

3.6 Pruning 20

4 User Interaction Requirements 20
4.1 SpiderGraph Button oL oo 20
4.2 Graph Interaction oL 20
4.2.1 Visitingnodes 20

4.2.2 Adding New Edges And Nodes 21

5 Non-Functional Requirements 22
5.1 Product 22
5.2 Imstallation 22
5.3 Development e 22
5.4 External requirements Lo oo 23

6 Requirements for Next Development Phase 24
6.1 Nodes e 24
6.1.1 Labels 24

6.1.2 Style 24

6.1.3 Derived Styleo 25

6.2 Edges 26
6.2.1 Transitivity oL 26

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 0 Page 4
6.2.2 Style 26
6.2.3 Derived Style o 27

6.3 Roots e 27
6.3.1 Multiplerootso 27
6.3.2 Automatically getting new roots 27
6.3.3 Manually creating new roots 28

6.4 Clusters 28
6.4.1 Partial equivalenceo 28
6.4.2 Grouping clustering oL oL 29
6.4.3 Reduction clustering oL L. 29

6.5 User Interaction Requirements 30
6.5.1 Inspectingnodes 30
6.5.2 Selectingnodes Lo oo 30
6.5.3 Inspecting thegraph 31
6.5.4 Changing The Root 31

7 System Evolution 32

71 Overview o e 32

7.2 External documentation Lo oL 32
7.2.1 Major design decisions 32
7.2.2 Evolutionary changes 32

7.3 Internal documentationo L oo 35

7.4 Changes and their impact 35

7.5 Programming languages L. 35

7.6 Pastversions 36

7.7 Extensibility 36
7.7.1 Extensibledesigno L L oo 36
7.7.2 Futureworko 36

SpiderGraph Requirements

Revision : 1.8

2nd June 2003

Section 0 Page 5

A Index 37
B Screenshots 40
C Bibliography 42

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 0 Page 6

List of Figures

N O Ot s W

oo

10
11
12
13

Typical browser behavior compared to SpiderGraph enhancement . . . 7
phpOpenTracker server clickpath graph 11
Static hypertext link graph for a hypothetical web site 12
Redundancy based graph reduction, 13
Unstable versus stable graph layout 19
Complete URLs as labels in a history graph 24
Derived styles in a history grapho 26
Grouping clustering of highly connected node sets 29
Reduction clustering for nodes on the same domain 30
Sample design decision documentation entry 33
Sample evolutionary change logentry 34
Prototype system screenshot 1 40
Prototype system screenshot 2 41

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 1 Page 7

1 Introduction

1.1 Abstract

The most commonly used navigation tools in modern web browsers are the Forward
and Back navigation buttons. However, in many cases the default implementations of

these buttons are unsatisfactory for the user.

The figure below shows a typical situation: a user visits search engine A, clicks on a
link to B, clicks Back, and then visits C. Thus reference to B is lost, and there is no

way to get quickly back to B without clicking the actual link again.

Visit B Can’t return to B SpiderGraph

Figure 1: Typical browser behavior compared to SpiderGraph enhancement

SpiderGraph is intended to improve the standard navigation buttons by storing user
click history in a graph data structure, and then displaying the history graph on demand
to allow easy navigation to all previously visited pages. SpiderGraph will also offer
the user the option of decorating the graph with other information, helping the user

to quickly locate the desired location.

1.2 Purpose of this document

This document serves to specify the complete functional and non-functional require-
ments for the SpiderGraph project. It illustrates the various system features and

functional details for the end-users and SpiderGraph developers.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 1 Page 8

1.3 Goals

SpiderGraph is intended to produce an easy-to-use Mozilla web browser extension that
generates and renders the URL history graph. The extension will allow the user to

easily locate and navigate to previously visited URLs.

The following components will be produced:

1. History graph formatter - generates the history graph with user-specified

parameters, and computes all relevant decorations
2. History graph renderer - displays the generated graph in a window

3. Mogzilla GUI for the renderer - provides for user interaction with a graph

1.4 Scope of the product

SpiderGraph will provide a fully working interactive history graph extension for Mozilla
web browser. It will use the existing graphing tool, and will improve its graph layout

capabilities by using domain specific information about web pages.

SpiderGraph is not intended to provide a full graphing capability, but will instead be
based on an existing graphing package. Core graphing capabilities will be provided by
the GraphViz suite.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 1 Page 9

1.5 Definitions, acronyms and abbreviations

clickpath The order in which a set of web pages or nodes are traversed.
cluster A set of related nodes grouped together or consolidated into a single node.

domain A group of web pages that belong to the same address or domain name.

edge A directional or non-directional line which shows the relationships between
two nodes.
graph A diagram that exhibits a functional relationship between a set of elements.

GraphViz A graph layout and rendering package.
GUI Graphical User Interface

hypertext Computer based text retrieval system that enables a user to access par-

ticular locations in web pages or other electronic documents by clicking on

links.

link A reference from some point in a hypertext document to some point in

another document or another place in the same document.
Mozilla Web browser application.
navigate To traverse through the world wide web.
node A point or vertex in a graph.
prune To remove unnecessary or unwanted nodes and edges in a graph.
render Process of visualizing internal representation of graphical objects.
root The starting point or the first node of a graph.
RPM Red Hat Package Manager
transitive The relation x to y and the relation y to z implies the relation x to z.
tree A graph in which there is only one route between any pair of nodes.

URL Uniform Resource Locator

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 1 Page 10

web browser An application used to navigate the world wide web.

web server A process running at a web site which sends out web pages in response

to HT'TP requests from remote browsers.

weight The varying degree of importance of an edge.

1.6 Overview of the remainder of the document

The rest of this documents presents functional and non-functional requirements for the
SpiderGraph system and the future evolution. Requirements for the initial phase of
this product are given in sections three, four, and five. Additionally requirements for

future development phases are given in sections six and seven.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 2 Page 11

Figure 2: phpOpenTracker server clickpath graph

2 General Description

2.1 Product perspective

SpiderGraph builds graphs of web page relationships. In the basic operational mode
the graph represents the user click history, however the formatter makes it possible to
augment the graph with other information derived from the web pages themselves. In
general, the formatter might transform the graph by eliminating unnecessary edges, or

by reassigning the edges based on some predefined notion of structure.

Producing the simple graphs of web page relationships is not difficult with the tools
that exist today. However, even for small web sites the graphs tend to get out of hand,
and become very hard to interpret. For example, Figure 2 shows a web server derived
clickpath graph, produced by phpOpenTracker. The graph shows weighted paths
taken by the users between 10 different URLs. Unfortunately, it conveys almost no

useful information due to the incomprehensible structure.

SpiderGraph aims to produce highly readable graphs, by using the domain-specific
information about web pages to improve graph layout.
2.2 Product functions

The SpiderGraph browser interface builds a tree graph, where each node in the tree

represents a web-site and each edge in the tree represents a link (directed toward the

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 2 Page 12

linked site from the original site), based upon the user’s browsing history. Additionally,

the graph might be augmented with derived information.

This tree representation enables the user to jump to any desired page in the history,
including any pages closely related to the current page that are inaccessible using
the conventional Back and Forward browser navigation buttons. Figure 3 shows an
example of how such a graph might look like. Note that Products, Services, About, and

Links were grouped in a cluster to express their highly connected structure.

Products
o 2

Service

widgets.org

Welcome

{

About

Links > google.com

Figure 3: Static hypertext link graph for a hypothetical web site

By design, the SpiderGraph interface provides a representation of the user’s browsing
history. Information that is displayed provides not only the visited pages, but how the
user arrived at a particular page. This data could be extremely useful for marketing,

tracking, and research purposes’.

The browser history will be represented internally as a graph data structure to which
various algorithms can be applied that transform the graph to simplify it, or derive the
structural or other properties of a collection of web pages. For example, a user might
be interested in seeing just the structure without actually seeing all edges, and thus a

graph might be simplified.

'SpiderGraph will not, under any circumstances, disclose this information to a third-party or its
developers.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 2 Page 13

Welcome Welcome
Links About Service Products Links About Service Products
[[~ [~ [~ I~ I~
google.com widgets.org google.com widgets.org

Figure 4: Redundancy based graph reduction

2.3 User characteristics

Likely users of SpiderGraph would be those who frequently access the Internet; that
is, any current user of a web browser may enjoy and appreciate the graphical repre-
sentation of site history provided by SpiderGraph. This browser display, which lends a
more intuitive and controlled interface, may appeal to a significant number of regular

Internet users, hence becoming the preferred browser tool.

The target user community for SpiderGraph would need only an elementary level of

computer skill; as with any point-and-click interface.

SpiderGraph will facilitate the use of the web as a research tool, since it will simplify
navigation through a large collection of web pages. It would appeal to web designers
who wish to visualize their design. Finally, it would be a very useful tool in everyday

web browsing.

2.4 General constraints

The web browser application Mozilla, to which SpiderGraph will be added, is open-
source and therefore subject to no proprietary or regulatory policies. The same can
be said of the display tools within the GraphViz package. SpiderGraph’s capabilities
are limited only by Mozilla’s capabilities, simply because the SpiderGraph project’s
function is to process data within Mozilla in a specific way, but not necessarily to

extend Mozilla’s functionality.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 2 Page 14

2.5 Assumptions and dependencies

The browser to which SpiderGraph will be added is Mozilla, an open-source application
that can be used on Windows, Unix, and Macintosh machines. Given the limited time
and resources of development for this project, it may not be possible for SpiderGraph

to function on all of these platforms, though this is certainly a goal.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 3 Page 15

3 Graph Rendering and Formatting Requirements

3.1 Description
3.1.1 Graph description

The graph will be generated using the user’s browsing history. Each node in the tree
will represent a unique URL, and each edge in the tree represents a hypertext link
between URLs. Note that possible SpiderGraph extensions might use other meanings
for edges.

3.1.2 Graph rendering

Input Sites visited through the Mozilla browser.
Processing || Build up an internal data structure

Decorate nodes (See section 6.1.3)
Decorate edges (See Section 6.2.3)
Render the graph using GraphViz tools.

Output Displayed graph representing browser history.

3.2 Nodes
3.2.1 Style

Node caption and color constitute the node’s style. The following factors constitute

the node style and will be:

1. Shape (ex. circle, square, trapezoid, etc.)
2. Fill color (color of the filled area inside node)
3. Border color (color of the node boundary)

4. Label color (color of the text inside node)

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 3 Page 16

Each node will be drawn as a filled circle with a black border. Figure 6 shows a history
graph with nodes of oval shape, light blue fill color, transparent border color, and black

label color.

Input The style of the nodes.

Processing || Graph is rendered using style parameters.

Output Proper node labels are displayed. See the figure below for a complete
URL labels example.

3.2.2 Uniqueness

Nodes and graphed URLs have a 1-to-1 correspondence, e.g. for every node, there
exists a unique URL which it represents. All URLs that have been represented by a
node somewhere in a graph before will not be represented again as a new node in this
graph. This means that if the user enters a URL or chooses a Bookmark a new root
will not be created, if the node for that URL already exists.

Input A site is visited and automatically contained in a node data struc-

ture.

Processing || If the current URL exists in a previous node, nothing is done; oth-

erwise, a new node is created as the new root.

Output New root or nothing

3.3 Edges
3.3.1 Directionality

Edges will be directed. Directed edges will show the direction of the link with an arrow.

Input History graph

Processing || Format the edges.

Output Directed graph layout.

3.3.2 Derived Style

It will be possible to produce graphs with edge styles derived from the web page data.

The following characteristics will affect the style derivation for nodes:

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 3 Page 17

1. Number of visits to a target URL

Input History graph.

Processing || URLs corresponding to nodes are traversed, and their relevant char-

acteristics are derived.

Output Corresponding edge styles’ are updated accordingly.

3.3.3 Deriving style for weighted edges

Each edge will carry a weight property that represents the number of times it has been
used. Each time the node v is accessed by linking from node u, the edge weight W,,_,,

will be incremented.

Each edge that has a high weight relative to other edges will be colored red (or some
other noticeable color), so that the user can readily identify this particular edge as one

that is often used.

Each node with a high in-degree weight (total weight of edges pointing toward it)
relative to other nodes will be colored red (or some other noticeable color), so that the

user can readily identify this particular node as one that is often visited.

3.4 Root
3.4.1 Definition

The root of the history graph represents the first site pulled up by the browser window,
usually the home page. The root of the history graph will also be known as the start
state or start URL.

3.4.2 Initialization

Input Browser launched, and home page brought up.

Processing || If page does not exist in previous tree, tree data structure initialized

with page as its root. Graph is drawn.

Output Graph with a single root node representing the current page.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 3 Page 18

3.5 Growth
3.5.1 Growth direction and scrolling

The graph will be displayed with a root node in a topmost position, and branches
growing down toward the bottom, with scroll capabilities in the graph viewport to

enable large tree growth.

Input Browser history data in tree data structure.

Processing || Appropriate options will be chosen in the GraphViz tool to produce

scrolling.

Output Scrollable viewport.

3.5.2 New nodes

Nodes are added with every traveled link to a new URL, not already in a graph. New
URL is represented by a new node connected to the originating page with a directed

edge pointing towards the new node.

Input A new page is visited using a link on the current page.

Processing || A new node representing the new page is created and added to the
tree data structure. The display of the old tree is redrawn to reflect
the added node.

Output New node is added to the graph.

3.5.3 Stability

The tree will grow such that the overall shape does not change radically. The user
should be able to maintain familiarity with the tree shape and structure. Figure 5
shows an example of uncontrolled graph layout, which violates this rule: when new

edges are added, node positioning changes significantly.

Input Continuous visits to new sites using links will make the tree grow.

Processing || Existing options chosen within the GraphViz graph-drawing tool will
keep the tree stable and familiar as new nodes are added to it. If
options do not already exist, algorithms will be implemented towards

this purpose.

Output Graph remains familiar as it grows without radical changes.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 3 Page 19

Original graph Two edges added : unstable layout

Figure 5: Unstable versus stable graph layout

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 4 Page 20

3.6 Pruning

Over the course of a browsing session, the history graph keeps growing. To keep it
manageable, the number of nodes should not keep increasing, thus at each iteration a

graph will be pruned.

Several criteria for removing nodes will be available:
1. Age - time last visited
2. Frequency - number of times visited

3. Relevance - subjective measure based on a position in a tree

Input The criteria for pruning as such as age or frequency.

Processing || The nodes that satisfy the pruning cutoff are removed.

Output The graph is redrawn. .

4 User Interaction Requirements

4.1 SpiderGraph Button

A new button for the SpiderGraph will be added to the web browser’s interface.

Input The user will single left-click on the button to open the SpiderGraph

window. The user double-clicks on a node in the graph.

Processing || The button activates the window.

Output The window opens with the current SpiderGraph web page history.

4.2 Graph Interaction
4.2.1 Visiting nodes

Every site already represented in the graph can be immediately accessed by double-

clicking on the corresponding node.

Input The user single-clicks on a node in the graph.

Processing || SpiderGraph tells Mozilla to open the corresponding web-page. The

graph window is deactivated.

Output Mozilla displays the corresponding web-page.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 4 Page 21

4.2.2 Adding New Edges And Nodes

New nodes are added to the history graph as the user clicks hyperlinks on the web
pages.

Input User click on a link on a web-page.

Processing || New node for the target URL is created, if it is not already exists.

An edge from node with linking URL to the target is created.

Output Graph is augmented with a new node and an edge, or an edge to an

existing node.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 5 Page 22

5 Non-Functional Requirements

5.1

Product

. SpiderGraph shall execute at a reasonable speed, so as not to interrupt the flow

of user interaction.

. This software will have negligible overhead over Mozilla.

SpiderGraph will not interfere with the functionality already provided by the web

browser.

Installation

. SpiderGraph shall be distributed on Linux and Windows.

. The software shall be easily installable, allowing novice users to setup and operate

SpiderGraph.

. The installation shall only require Mozilla and DOT as a dependency.

SpiderGraph will provide source code and documentation.

. All input will be handled by both keyboard and mouse.

SpiderGraph shall provide means so that it can be used for server side navigation.

Development

. This software will be written with source readability as the highest concern.
. Portability to other web-browsers shall be a high concern also.

. The software shall be licensed with GPL, BSD or similar open-source license.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 5 Page 23

5.4 External requirements

1. License and distribution cannot conflict with any of the rules and regulations of

Drexel University.

2. SpiderGraph will be secure and not leak information off the system.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 24

www.google.com www.slashdot.org

!

http://www.google.com/search?hl=en&ie=UTF-8&o0e=UTF-8&q=graphviz&btnG=Google+Search

|

http://www.research.att.com/sw/tools/graphviz/

I

http://www.research.att.com/info/ http://www.research.att.com/

Figure 6: Complete URLs as labels in a history graph

6 Requirements for Next Development Phase

The purpose of this section is to list requirements that were not implemented as origi-

nally listed in version 1.8 of this requirements document.

6.1 Nodes

6.1.1 Labels

Input User input concerning preferences for the labels of the nodes.

Processing || Labels for the nodes can be a number, added in an incrementing
order corresponding to the time-line in which the user visits each
page, the domain name of the node, to conserve space, or the entire
URL of the web-page. In either case, the space allotted for the node
label will be limited and upon selecting the node, the complete label

will be displayed.

Output Proper node labels are displayed.

Example Figure 6 shows a graph with URLs as node labels.

6.1.2 Style

Node caption and color constitute the node’s style. The following factors constitute

the node style and will be user-changeable:

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 25

1. Shape (ex. circle, square, trapezoid, etc.)
2. Fill color (color of the filled area inside node)
3. Border color (color of the node boundary)

4. Label color (color of the text inside node)

Each node will be drawn as a filled circle with a black border. Figure 6 shows a
history graph with nodes of oval shape, light blue fill color, transparent border color,
and black label color. These parameters will be user changeable via the Preferences
facility (Section 6.5.4).

Input User input concerning preferences for the style of the nodes.

Processing || Graph is rendered using user specified style parameters.

Output Proper node labels are displayed. See the figure below for a complete
URL labels example.

6.1.3 Derived Style

It will be possible to produce graphs with node styles derived from the web page data.
The following characteristics will affect the style derivation for nodes:

1. Number of visits to a URL
2. Whether the referred page uses Flash / Cookies / Java
3. Whether a page is in the user’s bookmarks

4. Number of images

5. Length
6. MIME type
Input History graph. User preference settings for derived style application.

Processing || URLs corresponding to nodes are traversed, and their relevant char-

acteristics are derived. Individual node style is updated.

Output Corresponding node styles’ are updated accordingly.

Figure 6 with the application of derived style modifiers becomes Figure 7. Here green
color shows that google.com is in user’s bookmarks, and GraphViz related URL is pink

because it is very often visited.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 26

www.google.com www.slashdot.org
http://www.google.com/search?hl=en&ie=UTF-8&0e=UTF-8&q=graphviz&btnG=Google+Search

A

http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/

http://www.research.att.com/info/

Figure 7: Derived styles in a history graph

6.2 Edges
6.2.1 Transitivity

Edges implied by transitivity are usually redundant, eg. they do not carry useful
information for the user, and thus can safely be removed for graph clarity. An example

of a simple removal:

{A-B—-C,A—»C}={A—>B—C}

In the example above an edge from A to C' is removed, since it is implied by a path
through B.

Input History graph

Processing || Redundant edges implied by transitive hyperlinking relationship are
removed.

Output Reduced history graph.

6.2.2 Style

The following factors constitute the edge style and will be user changeable:

1. Line thickness

2. Line style

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 27

3. Line color
4. Caption

5. Arrow shape

This first release of SpiderGraph will not assign captions to edges.

Each edge will be drawn as a solid black line with a standard arrow shape. These

parameters will be user changeable via the Preferences facility (Section 6.5.4).

6.2.3 Derived Style

It will be possible to produce graphs with edge styles derived from the web page data.

The following characteristics will affect the style derivation for nodes:

1. Whether target URL uses Flash / Cookies / Java

2. Whether target URL points to a valid page

Input History graph.

Processing || URLs corresponding to nodes are traversed, and their relevant char-

acteristics are derived.

Output Corresponding edge styles’ are updated accordingly.

6.3 Roots
6.3.1 Multiple roots

Multiple roots are allowed on a graph. This implies that several independent browsing

sessions were performed with different starting locations.

6.3.2 Automatically getting new roots

Root nodes are automatically created when the user clicks on a URL from his/her

Bookmarks, provided that the site not already exists in the graph.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 28

Input A new site is visited without using a link, such as direct URL entry
or Bookmark selection.

Processing || If the new site does not exist elsewhere in any previously generated
graph, then it becomes the root of a new graph. A new data structure
is initialized with page as its root.

Output A new graph is drawn beneath the older graph.

6.3.3 Manually creating new roots

New roots might be selected by the user from existing non-root nodes in order to split

the graph. The node will be removed from the original graph and become the root of

a new graph, placed just below the last graph.

Input Node is selected and CREATE NEW TREE button is clicked.

Processing || The node is removed from its previous tree, along with all nodes in
branches extending from it.

Output Old graph is redrawn and new graph is created and drawn.

6.4 Clusters

6.4.1 Partial equivalence

Partial equivalence relation on nodes is a relation that groups several nodes based on

their characteristics. Partial equivalence will be used for graph clustering, and will

be determined on a basis chosen by the user. The following list enumerates possible

choices:

1. Same URL - this is the default behavior, nodes with the same URL are always
merged, so that the user does not see duplicate URLs in the graph.

2. Same domain - all nodes on the same domain, for instance drezel.edu.

3. Same link depth from specific node - all nodes within specific depth of a chosen

node.

4. Highly connected nodes - nodes that form a complete graph.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 29

Welcome Welcome
Products Links About Service Products
\ T~
Service google.com widgets.org
)
Links

L

About widgets.org google.com

Figure 8: Grouping clustering of highly connected node sets

6.4.2 Grouping clustering

Grouping clustering puts several partially equivalent nodes close together on a graph,

removes redundant edges and highlights the region.

Input The graph. User’s criteria for partial equivalence.

Processing || All partially equivalent node sets are grouped in a bound area in the

layout. Redundant edges implied by transitivity are removed.

Output The graph is redrawn with grouped node area is highlighted for easy

reference.

Figure 8 shows an example of grouping of several highly connected nodes.

6.4.3 Reduction clustering

Reduction clustering collapses several partially equivalent nodes into one node. All

edges leading into collapsed nodes are redirected into the new node.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 30

Original graph After reduction clustering
www.slashdot.org www.google.com www.slashdot.org www.google.com
http://www.google.com/search?q=graphviz&btnG=Google+Search www.research.att.com

/

http://www.research.att.com/sw/tools/graphviz/

A

http://www.research.att.com/info/ http://www.research.att.com/

Figure 9: Reduction clustering for nodes on the same domain

Input The graph. User’s criteria for partial equivalence.

Processing || All partially equivalent node sets are collapsed into a single node.
All edges leading into collapsed nodes are redirected into the new

node.

Output The graph is redrawn.

Figure 9 shows an example of reduction clustering for a nodes on the same domain.

6.5 User Interaction Requirements
6.5.1 Inspecting nodes

The user can retrieve information from the graph by selecting a node, right-clicking on

it and then selecting properties.

Input Single left-click and then right-click.

Processing || Information about the node and/or the graph is collected.

Output The information is displayed on the screen.

6.5.2 Selecting nodes

A node will become selected by single-clicking on it. Selecting a node enables the user

to perform a number of operations (covered later in this section).

Input The user single-clicks on a node in the graph.

Output || The selected node is outlined.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 6 Page 31

6.5.3 Inspecting the graph

Floating the cursor above a node will trigger an unobtrusive text-box to display various
information about the node, such as associated URL, related URL that has been visited

before (usually the main page), geographical location if possible, etc.

Input The cursor is floated above a node (no click).

Output || Data about the node is displayed in a small text box (like a help
box).

6.5.4 Changing The Root

In some cases the user might want to reduce the graph by selecting the new root by
hand.

Input User right-clicks on a node, and selects Make root.

Processing || Selected node becomes a root. Nodes linking Zo the root are removed.

Graph is reformatted.

Output Graph is redrawn with a new root.

Preferences

All aspects of the SpiderGraph will be changeable from the Preferences Window.

Input User selects SpiderGraph Preferences from Mozilla Preferences

menu.

Processing || Configuration information is collected.

Output Preferences window is shown with parameters changeable by the

user.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 7 Page 32

7 System Evolution

7.1 Overview

As is expected of all major software systems, SpiderGraph will undoubtedly need to
be revised numerous times throughout its lifespan. Reasons for this include but are
not limited to errors within the original release, revised or newly formed requirements,
and changes in the system’s external environment. Unfortunately, it is often the case
that changes to a system come at a great cost, financially. This being the case, it is
essential that SpiderGraph be designed and maintained in such a fashion that changes
to the system can be carried out as efficiently as possible. As such, SpiderGraph will

adhere to certain guidelines aimed at minimizing the cost of revisions.

7.2 External documentation
7.2.1 Major design decisions

All design decisions, in terms of implementation techniques, shall be documented.

More specifically, we mean that all source code files utilized by the system shall have
an accompanying piece of documentation. In this piece of documentation, there shall
be an explanation of why the specific code was written as it was. For example, if a
particular type of data structure is used to store information within the program, the
reason that type of data structure was chosen, as opposed to another, shall be clearly
stated. This should in turn lead to less confusion when changes to the system are
incorporated which in turn will lead to greater system efficiency and less cost. It is
also expected that these files be updated as design decisions are revised. As such, each

file should contain the date on which it was last modified.

Figure 10 shows a sample documentation entry for a design decision.

7.2.2 Evolutionary changes

All changes to the system, regardless of size, shall be clearly documented so that a total
history of changes can be obtained at any given point in time throughout the system’s

lifespan.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 7 Page 33

SAMPLE EXTERNAL DOCUMENTATION Page 1 of 1

External Documentation
File:

Graph.cpp
Description:

The primary function of graph.cpp is to provide a means of storage for a graph.
Although there are several different ways of representing graphs, it was decided that the
adjacency list representation be used. The reason for this was primarily to cut down on
the amount of space needed to store the graph. As such, all functions that operate on
graphs need to keep in mind that they will be operating on a graph irepresented n
adjacency list format.

Last Revised:

11/12/02

Figure 10: Sample design decision documentation entry

More specifically, all changes made to SpiderGraph will be well documented and stored
within an electronic log. In order to ensure that changes to SpiderGraph are well

documented, entries within the log shall include all of the following information:

1. Each change shall be assigned a unique identity number
2. The date or range of dates on which the change was made
3. All team members involved in the change

4. All files and algorithms that are modified in addition to what the modifications

involved

5. Any new files and or functions that are introduced into the system and why they

were incorporated
6. Any other parts of the system that may be affected as a result of the change
7. Why the change was performed

8. Why the change was implemented as it was

Figure 11 shows a sample log entry for an evolutionary change.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 7 Page 34

SAMPLE LOG ENTRY Page 1 of 1

Reference Number - 1583673
Start Date - 9/12/02
End Date - 9/13/02
People Involved:
1) Yevgen Voronenko

2) Marc Cohen
3) Frederick Walsh

Files:
1) graph.cpp
2) graph.h
Algorithms:

1) colorGraph(int numOfColors) in file graph.h
2) colorGraph(int numOfColors) in file graph.cpp

Part Of Algorithms changed:

1) graph.h
Graph.h had to be modified in order to incorporate the new function
prototype for function colorGraph(int numOfColors). The file initially had a
prototype of colorGraph(). Note the change in prototype; the function now
accepts an integer specifying the number of colors to use in the graph.

2) graph.cpp
Graph.cpp had to be changed in order to now incorporate the new function
definition for colorGraph(); that is it had to now incorporate the integer
parameter specifying the number of colors to utilize in the graph when
assigning colors to nodes/edges. It was also modified to ensure that it did not
assign more colors to the graph than the specified vale.

New Files/Function Introduced:
None

Other Parts of System Affected By the Change:
None

Reason For Change:
Testing phases of SpiderGraph showed that the amount of colors used to draw a graph
should not be consistent because of the varying size in graphs. In other words, the
amount of colors used should vary from graph to graph. As such, we needed a way to tell
the colorGraph function how many colors to use when coloring the graph.

Reason Change Was Implemented As It Was:
Careful analysis of the design of the system indicated that passing an integer argument to
the function indicating the number of colors to use was the most efficient solution. It was
determined that the extra parameter would not affect any other part of the system and that
it would not hinder the system in any way.

Figure 11: Sample evolutionary change log entry

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 7 Page 35

7.3 Internal documentation

All source code for SpiderGraph shall be heavily commented in such a fashion that
there shall be no question as to the purpose and function of each line of code within the

system.

Without a doubt, there will ultimately be numerous individuals that work on any one
piece of code within the system. As such, it is essential that any programmer working
on the system be able to read and understand any portion of the code utilized by the
system even if he/she was not the original author. In other words, SpiderGraph shall
be coded in such a fashion that there shall exist no ambiguity about the purpose and
function of each line of source code contained within the system. As such, it is expected
that all source code be heavily and precisely commented. It is also expected that this

form of internal documentation be inherited by all future versions of SpiderGraph.

7.4 Changes and their impact

Before a change to the SpiderGraph is committed, it is expected that the change and

its consequences will be well understood.

A change should not be performed on the system unless its consequences have been
thoroughly examined. That is, before any change is made, the programmer must
understand how his/her change will affect not only the file or piece of the system
that they are modifying but how the change will affect other parts of the system in
addition to any parent systems (ie. Mozilla). As such, it is expected that no change be

performed on the system unless its impact is thoroughly examined and well understood.

7.5 Programming languages

All changes to the system shall be implemented in the language in which the system is

presently written

Because one of the aims of SpiderGraph is that it be easily and efficiently modified, we
will require that all changes be implemented in the existing language of the program. If
this is not done, it will undoubtedly lead to increased difficulty in the areas of legibility
and system evolution. As such, it is expected that all changes be coded in the current

core language of SpiderGraph.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section 7 Page 36

If however it is deemed necessary that the core language of the system be altered, it
will be done so by converting all of the code at once. That is, the entire system will be
written in the new language all at once and any future changes will be carried out in the
newly chosen language. However, because conversion of the system will undoubtedly

be very expensive, it shall be utilized only as a last resort.

7.6 Past versions

Past versions along with the source code shall be accessible at all times.

Over the course of several generations of the system, there may come a time at which
the designers of the system decide they would like to revert to a previous version of
the system. As such, a collection of all previous versions of SpiderGraph, in addition
to their version specific documentation shall be easily obtainable at all times. In order
to ensure that these copies remain unchanged, it is expected that they be stored on

some sort, of read-only memory device.

7.7 Extensibility
7.7.1 Extensible design

SpiderGraph shall be designed in such a manner as to allow for a wide range of flexible

extensions to be easily implemented.

The initial purpose of SpiderGraph is to provide a graphical representation of the
user’s browsing history. However, it would be worthwhile to design the system in such
a fashion that future versions can include increased functionality. That is, although the
initial version of SpiderGraph will only provide a graphical representation of the user’s
browsing history, the design of the system shall not be limited to this function only.
The system shall be designed in such a manner as to eventually allow the program to

perform additional functions.

7.7.2 Future work

The ability for the system to examine all pages housed on a particular server and graph

the visitation frequencies between them.

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section A Page 37

If a feature such as the ability to graph the relationship between pages on a server
and their visitation frequencies was added to SpiderGraph, the results could be very

advantageous as outlined below:

1. Increasing the domain of users for SpiderGraph.
2. Attracting system administrators

3. Enabling system administrators to better organize their servers/files so that they

could provide increased viewing efficiency. For example:

a) Strong relationship between two pages on a server, implies that pages should
g g

be located closer, to increase viewer effectiveness

(b) Often visited link target can be promoted to the domain root

The ability to visualize static hypertext link relationships between web pages within a

directory.

By this, we mean that SpiderGraph will extend its functionality so that it will be able
to examine the source code of web pages, extract the links embedded within, and show
where they lead to. More specifically, SpiderGraph will examine all links contained
within a page, follow them, and add each page that it encounters to the graph it is
generating. Note that in this type of graph, the edges leaving a vertex will represent all
of the web pages that are directly reachable from the page represented by the vertex
in question. The vertices of the graph will once again represent entire pages. The

resulting graph will thus show all pages which are reachable from a single source page.

A Index

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Index

abbreviations, 9
abstract, 7
acronyms, 9
arrow, shape, 27
assumptions, 14

BSD, 22

changes, evolutionary, 32
changes, impact, 35
characteristics, 13
clustering, 28

clustering, grouping, 29
clustering, reduction, 29

constraints, 13

definitions, 9

dependencies, 14

derived style, 16, 25, 27
design, 36

design decisions, 32

design, extensibility, 36
development, 22

directed, 16

direction, 18

directionality, 16
distribution, 23
documentation, 32, 35
documentation, external, 32
documentation, internal, 35

documentation, sample, 33

edge, directionality, 16
edge, style, 26

38

edge, transitivity, 26
edges, 16

edges, adding, 21
edges, weighted, 17
evolution, 32

extensibility, 36

formatter, 8
formatting, 15
functions, 11
future work, 36

goals, 8

GPL, 22

graph, clustering, 28
graph, description, 15
graph, edges, 16
graph, formatter, 8
graph, formatting, 15
graph, growth, 18
graph, inspecting, 31
graph, interaction, 20
graph, labels, 24
graph, nodes, 15
graph, pruning, 20
graph, renderer, 8
graph, rendering, 15
graph, root, 17
graph, stability, 18
graph, style, 15, 24
GraphViz, 8, 13, 22
grouping, 29

growth, 18

Section A

growth, direction, 18
growth, stability, 18

grpah, simplification, 12

GUI, 8

installation, 22
interaction, 20
interface, 13

labels, 24

license, 22, 23

line, color, 27

line, style, 26

line, thickness, 26
log entry, sample, 34

Mozilla, 8, 13, 22

node, clustering, 28
node, equivalence, 28
node, uniqueness, 16
nodes, 15

nodes, adding, 21
nodes, inspecting, 30
nodes, new, 18
nodes, selecting, 30

nodes, visiting, 20
open-source, 22

partial equivalence, 28
perspective, 11
phpOpenTracker, 11
point-and-click, 13
preferences, 31

product, functions, 11

pruning, 20

purpose, 7

readablity, 22

reduction, 29

renderer, 8

rendering, 15

requirements, development, 22
requirements, external, 23
root, 17

root, changing, 31

scope, 8

scrolling, 18
simplification, 12
source, 13

speed, 22

stability, 18

start state, 17
start URL, 17
style, 15, 24, 26
system administration, 37
system, changes, 32

system, evolution, 32
transitivity, 26

uniqueness, 16
user characteristics, 13
user preferences, 31

user, interaction, 20

versions, 36

product, perspective, 11

programming languages, 35

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section B Page 40

B Screenshots

¥ UAT&TLabs Research - Our People - Mozilla {Build ID: 2002122020} [/ X

File Edit Wiew Go Bookmarks Tools Window Help Debug OA

AT]% http:/fwww.research. att.comy/info/ C | S m

% Red Ha, Inc. % Red Hat Network 3Support (£1Shop EiProducts 5 Training

i

é'['ﬂ’c'[' ilabE_Beseargh
Our People
Higme Innovators
People Hans Peter Graf : 1996 IEEE Fellow

Hans Peter's main areas of expertise are in image

processing, pattern recognition, computer graphics and the
design of microelectronic circuits...

_ﬂmozilla.gif[GlF Image, 588x230 pixels) - Mozilla {Build ID: 2002122020} ||| X
File Edit View Go Bookmarks Tools Window Help Debug QA

Projects

Research
“ Areas

Resgources
W google. com

Search L
G ick SEARCH httpsd A, google .. condsearch?hl=ent iesUTF-8oe=UTF-Ska=graphvizibtnb=Google+Search
. http s Aun.research. att .com/su/tools/graphy iz
|

!

http A w . research .__att .__com;_”inFD.f'

[0 & Ed |

Figure 12: Prototype system screenshot 1

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section B Page 41

Hsm hdot: News for nerds, stuff that matters - Mozilla {Build 1D: 2002122020} |:|i|:| X

Eile Edit View Go Bookmarks Tools Window Help Debug QA

- 9 : | £ http:j/slashdot.org/ 5] Ry & m

_t_aack o Rebad, Search Print
, Inc. %RedHal ‘Network EflSuppon Elshop EProducts EITrajrmg

slashdot

News for Nerds. Stuif that matters.

ache
+ Security Hole Found in 4.3.0

Posted by michael on Sunday February 23,
@09:36PM - Ant Now A Top Level Apache
v fust
Apache 2.0.44 Released

from the compiling-while-intoxicated dept.
now3djp writes "] i[eu,s[m.z article over on CodingStvle :
. that demonstrated mozilla.gif (GIF Image, 588x230 pixels) - Mozulla {Build ID; 2002122020} =8 X

E w5 dl File Edit View Go Bookmarks Tools Window Help Debug QA
advertising Cm?wm‘e: './ has |

supporters
past polls
topics with real games

about time. Wine has re L

hope it reaches a https s A . google .com/zearch?hl=ent i e=UTF-Gtoe=UTF-8tg=graphviztbtnG=Google+Search

is different becaw
g Wi . google . com w1 ashdot .org

(Read More... | 6 L

httpe A research. att .con/su/tools/graphviz,

Science: More
Posted by micha l T \
from the foamology d http:/Aume.research. att .con/infos http /A research .att .coms

RodeoBoy writes
and Boeing wani:

Figure 13: Prototype system screenshot 2

SpiderGraph Requirements Revision : 1.8 2nd June 2003

Section C Page 42

C Bibliography

References
[1] AT&T Research Labs , "The DOT Language",
http://www.research.att.com/~erg/graphviz/info/lang.html, February 2003.

[2] AT&T Research Labs , "Welcome to GraphViz", http://graphviz.org/, February
2003.

[3] Bergmann, S., “phpOpenTracker”, http:/ /www.phpopentracker.de/, February 2003.

[4] Institute of Electrical and Electronics Engineers, "Hyperlinks", RFC 1866, Institute
of Electrical and Electronic Engineers, 1998.

[5] The Mozilla Organization, "Mozilla Hackers’s Getting Started Guide”,
http://www.mozilla.org/hacking/coding-introduction", February 2003

SpiderGraph Requirements Revision : 1.8 2nd June 2003

